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Abstract

An analytically based and numerically implemented method for the prediction of the behavior of cable
networks has been developed for the analysis of the in-plane free-vibration problem of a set of
interconnected taut cable elements. The methodology has been extended to large systems with complex
configurations and applied to the study of the oscillation mitigation of a real case on an existing cable-
stayed bridge.

Validation of the model has been performed through the comparison of the predictions with
experimental data derived from an extended ambient survey on an actual structural system. In addition,
the study includes a sensitivity analysis related to the introduction of design modifications to the original
configuration. The observations deduced from this research have contributed to the definition of
preliminary criteria for the selection of an optimized system.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

A companion paper [1] describes the methodology for the analytical derivation of the equation
of motion associated with the in-plane free-vibration problem of a cable network with a reduced
number of elements and a simple connection; closed-form solutions of these cases were also
presented.

The original procedure is extended herein to consider the in-plane modal analysis of large cable
networks. The problem of non-parallel orientation of the cables (three dimensional) and non-
orthogonal patterns of the grid (cables and restrainers) and the influence of the stiffness on the
transverse connectors is addressed.

ARTICLE IN PRESS

*Corresponding author. Tel.: +1-217-333-9896; fax: +1-217-265-0318.

E-mail address: npjones@uiuc.edu (N.P. Jones).

0022-460X/$ - see front matter r 2003 Elsevier Ltd. All rights reserved.

doi:10.1016/j.jsv.2003.11.059



This methodology is applied to the study of a real case, the Fred Hartman Bridge in Houston,
Texas (USA). In the first part of this analysis, the central-span network has been considered; the
modes of the existing system are computed and, subsequently, a sensitivity analysis is carried out
by introducing some modifications to the original design (locations and number of restrainers,
ground connections). The knowledge of the basic solutions [1] is used for the interpretation and
the identification of similar behavior also for a large system with several stays. In the second part,
the side-span arrangement is considered and the modal analysis is compared to experimental
results derived from an intensive ambient vibration survey of the same bridge that is currently in
progress [2,3].

2. Extension of the original methodology to large cable networks

2.1. Generalization of the problem for orthogonal-grid systems

The extension of the procedure, presented in Section 2 of Ref. [1] for a perfectly orthogonal
grid, is depicted in Fig. 1. The generic jth cable ðj ¼ 1;y; nÞ is divided into mj segments due to the
presence of the transverse cross-ties. The quantities m1;y;mj;y;mn are different for each cable
to account for a generalized configuration of the network with a variable number of connectors
(and segments) on each stay.

The jth cable is restrained at both ends. The geometric and physical characteristics of the jth
cable are indicated as: length Lj; tension Hj and mass per unit length mj: The upper stay of the
network (j ¼ 1; Fig. 1) is considered as reference. The remaining quantities are normalized with
respect to this element, i.e.,

o01 ¼
p

L1

H1

m1

� �1=2

; fj ¼
o01

o0j

¼
f01

f0j

; nj ¼
mjHj

m1H1

� �1=2

; ð1–3Þ

where o01 is the fundamental circular frequency of the upper (usually longest) cable, ðf0j ¼
o0j=2pÞ; fj is defined as the generic jth cable frequency ratio and nj as a mass–tension reduction
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Fig. 1. Generalized system of interconnected cables (orthogonal elements).
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factor. The length of the pth segment of the jth cable, the limits of which are defined by the nodes
Pj;p�1 and Pj;p; is denoted as lj;p (with p ¼ 1;y;mjÞ; accordingly, its reduced length, defined as the
ratio of the individual element length over the length of the corresponding jth cable is xj;p ¼
lj;p=Lj:

The horizontal offset between the jth stay with respect to the reference cable is indicated as
lOj ðlO1 ¼ 0Þ: The pth cross-tie (Fig. 1) is simulated by means of spring vertical elements with
generic stiffness Kj;p; with j ¼ 1;y; gp; where gppn is the number of connected cables, for the pth
connector.

The xjp along-axis co-ordinate of the pth segment of the jth cable (with j ¼ 1;y; n;
p ¼ 1;y;mj) has been taken in accordance with Fig. 1; transverse displacements, yjpðxjp; tÞ;
where t denotes the time variable, are considered positive downwards. The free-vibration problem
is concerned with the solution of a system of r partial differential equations (see Eq. (1) of Ref. [1],
with j ¼ 1;y; n and p ¼ 1;y;mj), in which yjpðxjp; tÞ ¼ YjpðxjpÞeiot; o is the natural circular
frequency of the coupled network (unknown), Yjp are appropriate spatial-dependent functions,
and r ¼

Pn
j¼1 mj is the total number of elements.

This problem can be reduced to a system of ordinary equations (see Eq. (3) of Ref. [1]). The
generalized form of the Yj;p functions can be proposed as

Yj;pðxj;pÞ ¼ Aj;p sin
ap
Lj

fjxj;p

� �
þ Bj;p cos

ap
Lj

fjxj;p

� �
; ð4Þ

where a ¼ o=o01 ¼ f =f01 is the reduced (dimensionless) frequency of the network. The 2r
unknown parameters Aj;p and Bj;p; representing the modal amplitudes of each segment, must be
solved from the boundary conditions, which are given by the continuity and compatibility set of
equations (equivalent to Eqs. (2), (A.2) and (A.4) in Ref. [1]).

The set of compatibility, continuity, equilibrium expressions for a cable network can be
generalized (after simplification of the eiot terms) as

Bj;1 ¼ 0 with j ¼ 1;yn; ð5Þ

Aj;mj
sinðapfjxj;mj

Þ þ Bj;mj
cosðapfjxj;mj

Þ ¼ 0 with j ¼ 1;yn; ð6Þ

Aj;pj
sinðapfjxj;pj

Þ þ Bj;pj
cosðapfjxj;pj

Þ � Bj;pjþ1 ¼ 0 ð7Þ

with j ¼ 1;yn; pj ¼ 1;y;mj;

Kj;pðBjþ1;pþ1 � Bj;pþ1Þ

¼
Xj

k¼1

apH1

L1
s p

k;j nkfAk;p cosðapfkxk;pÞ � Bk;p sinðapfkxk;pÞ � Ak;pþ1g ð8Þ

with p ¼ 1;y; *m � 1; j ¼ 1;y; ðgp � 1Þ; *m ¼ max½gp	;

KGp
Bgp;pþ1 ¼

Xgp

j¼1

apH1

L1
sp

j;gp
njfAj;p cosðapfjxj;pÞ

� Bj;p sinðapfjxj;pÞ � Aj;pþ1g with p ¼ 1;y; *m � 1: ð9Þ
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Eqs. (5) and (6) represent the condition of vertical displacement vanishing at each stay end,
Eq. (7) the along-cable internal continuity of displacement between two consecutive segments p
and p þ 1: Eq. (8) state the transverse internal continuity between points Pj;p and Pjþ1;p; by taking
into account the transverse force equilibrium of the upper part of the network (Fig. 2(a))
and the elongation of the spring element, with stiffness Kj;p; interconnecting the two stays and
equivalent to the relative vertical displacement between nodes Pj;p and Pjþ1;p: Expressions (9)
summarize the vertical global force equilibrium at each cross-tie location, by considering an
eventual spring-to-ground connection with stiffness KGp

(Fig. 2(b)). The quantities s p
k;j in

Eqs. (8) and (9) are identically equal to one for a perfectly orthogonal grid (details will be given
in Section 2.2).

It can be shown that the set of expressions (5)–(9) define the 2r compatibility equations required
by system (2) in Ref. [1]. The solution to the free-oscillation problem, and the determination of the
natural frequencies in terms of a; can be transformed into a system S of algebraic equations, by
assembling together Eqs. (5)–(9), in a more compact matrix form

SU ¼ 0; ð10Þ

U½2r 
 1	 ¼ ½A1 ? Aq ? Ar; B1 ? Bq ? Br	T; ð11Þ

where vector (8), U; regroups all the unknowns as Aq and Bqþr; corresponding to a given
element j; p; in terms of a unifying parameter q; such that Aq ¼ Aj;pBqþr ¼ Bj;p:

The infinite set of non-trivial solutions ðUa0Þ of the homogeneous system (10), associated with
the condition det½S	 ¼ 0; can be solved as an equivalent eigenvalue/eigenvector problem, related
to the transcendental nature of expressions (5)–(9), in which the solution, corresponding to the
free-vibration analysis, is sought in terms of the reduced frequency a: The set of a-solutions
cannot be generally identified in closed form for a complex structure; a numerical iterative
procedure is employed for the solution of the characteristic polynomial related to det½S	 ¼ 0: For
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Fig. 2. Compatibility conditions corresponding to (a) internal vertical continuity (10,12) and (b) global equilibrium at

each connector location (11,13).
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these solutions, ai; the vector of the modal amplitudes Ui (Aq and Bqþr) is derived from S along
with the corresponding eigenfunctions (4), Yj;p; normalized such thatXn

j¼1

Xmj

p¼1

Z lj;p

0

mj Aj;p sin
ap
Lj

fjxj;p

� �
þ Bj;p cos

ap
Lj

fjxj;p

� �� �2

dxj;p ¼ 1: ð12Þ

In addition, the first and second derivatives of the determinant function are numerically
computed and compared to det½S	 in order to evaluate the potential occurrence of multiple
solutions associated with the same frequency a as derived in Ref. [1] for particular cases. Multiple
eigenvectors related to a given frequency *a; with *S ¼ Sð*aÞ; det½ *S	 ¼ 0 and rank½ *S	o2r � 1; can be
derived from the eigenvalue problem with complex and multiple eigenvalues:

½ *S � *lI	U ¼ 0 ð13Þ

with *l ¼ 0: Eq. (13), generalization of system (10) for a ¼ *a; is used in these cases since the
iterative numerical computation of U by a direct solution of system (10) is less efficient.

The method defined by the step-by-step solution of system (10) through the set of compatibility
and boundary conditions was applied to the analysis of the relevant examples investigated in
Ref. [1], for validation purposes. Very good agreement was obtained with the closed-form
solutions previously determined.

2.2. Reduction of three-dimensional networks to equivalent orthogonal-grid systems

A real cable network, in most cases, does not correspond to a perfectly orthogonal grid, since
the orientation of the stays (fan system) is usually three dimensional and defined according to
cable anchorages at deck and towers [5]. The cables usually lie on a plane that is inclined with
respect to the horizontal axis; the slightly imperfect verticality of this plane is neglected in the
present analysis.

A set of stays with different in-plane inclination, as simply illustrated in Fig. 3(a) can be reduced
to an equivalent parallel taut-strip element by means of a polar-co-ordinate reduction (Fig. 3(b))
with respect to the reference cable (C1 in Fig. 3). Sag effects are neglected in this framework.

The original geometric quantities (length of the segments, position of the restrainers, cable
offsets) are redefined in accordance with the parallel orientation (Fig. 3(b)). The local (Fig. 3(b))
displacement variable of the generic ‘‘j; p’’ segment of a perfectly parallel system, yjpðxjp; tÞ; can be
referred to the real inclined configuration as orthogonal to the cable axis (Fig. 3(a)). The non-
parallel orientation of stays and restrainers (three-dimensional force equilibrium) is taken into
account through parameters s p

k;j in Eqs. (8) and (9) i.e., s p
k;j ¼

Qj�1
q¼kðsin

#cq;p=sin cq;pÞ ðwith sp
j;j ¼

1Þ where cq;p and #cq;p are the relative inclinations between the qth segment of the pth restrainer
and the upper (qth) and lower (ðq þ 1Þth) stay, respectively (e.g., c11 and #c11 in Fig. 3(a)).

Moreover, Eqs. (8) or (9) are referred to a vertical equilibrium (Fig. 2(a) and (b)) through the
force VCj;p ¼ Kj;pDyj;p (referred as VC in Fig. 3(b)), with Dyj;p perpendicular relative displacement.
The imperfect orthogonal orientation of the generic restrainer in the transformed system
ðc11ap=2 in Fig. 3(b)) with respect to the parallel-cable model can be accounted for by projection
of the restoring force and the displacement component in the cross-tie direction.

The internal compatibility equation of an inclined restrainer becomes FCj;p ¼ Kj;pdj;p; in which
both FCj;p (referred as FC in Fig. 3(b)) and dj;p are taken along the axis of the restrainer, defined
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through the inclination cj;p between jth cable and pth connector (referred as c11 in Fig. 3(b), with
cj;pD #cj;p). The projection of the force in the perpendicular direction can be written as VCj;p ¼
FCj;p sinðcj;pÞ; while the effective elongation of the spring dj;p (e.g., equal to l�C � lC in Fig. 3(b)) is
given by the component of the relative displacement Dyj;p between nodes Pj;p and Pjþ1;p

(YP2 � YP1 in Fig. 3(b)), in the direction parallel to the restrainer, i.e., dj;p ¼ Dyj;p sinðcj;pÞ:
By combining such expressions, an effective stiffness of the inclined cross-tie KEFF

j;p ; to be
directly inserted into Eqs. (10) or (11) instead of Kj;p can be defined as KEFF

j;p ¼ Kj;p ½sinðcj;pÞ	
2:

3. Numerical analysis of the main-span cable network of the Fred Hartman Bridge

The free-vibration analysis method, presented in Section 2 and Ref. [1], was applied to the study
of a cable network, modelled after the Fred Hartman Bridge, a twin-deck cable-stayed bridge over
the Houston Ship channel, with a central span of 380 m and side spans of 147 m: The deck is
composed of precast concrete slabs on steel girders with four lanes of traffic, carried by a total of
192 cables in four inclined planes, connected at 15 m intervals [2,3].

The investigated system corresponds to the south-tower central-span portion, a set of 12 stays
(‘‘A-line’’ from AS13 to AS24) with a three-dimensional arrangement (Fig. 4(a)). The geometric
and structural characteristics of the cables are summarized in Table 1(a). Stay ‘‘AS24’’ is assumed
as reference element (1–3), with fundamental frequency f01 ¼ 0:617 Hz:

3.1. Parametric study of the original design of the cable network

The transverse connectors, an ‘‘eight-loop’’ steel wire rope system, are located in accordance
with the original design (Fig. 4(a)). The characteristics of these elements are also provided in
Table 1(b). The three-dimensional network was reduced to an equivalent two-dimensional
problem with parallel elements (Fig. 4(b)) by means of the formulation as in Section 2.2; each
cable offset is considered in terms of the inclined system and referred to AS24. The arc
configuration of the cross-ties (Fig. 4) was reproduced through equivalent inclined linear spring
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Fig. 3. (a) Inclined-orientation system and (b) polar reduction to parallel stays.
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elements. As a result of this transformation to an equivalent two-dimensional problem, the overall
pattern of the model is slightly irregular (Fig. 5), since the lengths of each cable segment were
selected at symmetric locations with respect to each stay but not to the global network. The
effective normalized stiffness of the inclined connector (25), equivalent to a perfectly orthogonal
grid, is also included in Table 1(b).

Fig. 5(a) and (b) depict the evolution of det½SðaÞ	 and ðd=daÞfdet½SðaÞ	g in terms of a reduced
frequency a: As it can be seen from Fig. 5(a) initial high-amplitude fluctuations with some roots
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ð1oao3Þ are followed by a second interval of reduced frequencies in which the magnitude of the
determinant is considerably reduced and a ‘‘high-density’’ set of solutions is present, also shown in
the enlargement of Fig. 5(a) and (b) ð3oao5Þ: This sequence of ‘‘intermittent’’ amplitude
behavior is also repeated in subsequent intervals and for higher modes.

A careful study of these solution patterns showed that the first category of roots are associated
with ‘‘global modes’’, in which the whole set of cables is involved in the oscillation, along with a
substantial increment in the generalized mass of the mode, with respect to the individual cables.
The second category is one of ‘‘localized modes’’, in which the response of network is not global
but the maximum amplitudes are located in the intermediate segments of specific cables only.
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Table 1

Geometrical and structural characteristics of the Hartman system (central span): (a) stays, (b) restrainers

Stay Mass Tension L (m) L=LAS24ð�Þ Freq (Hz) fjð�Þ njð�Þ
(kg/m) (kN)

(a) Cable-stays

AS13 32.5 1651 59.52 0.30 1.89 0.33 0.39

AS14 47.9 1598 67.34 0.34 1.36 0.46 0.47

AS15 47.9 1900 76.55 0.39 1.30 0.47 0.51

AS16 47.9 2158 87.33 0.44 1.21 0.51 0.55

AS17 52.9 2394 99.38 0.50 1.07 0.58 0.61

AS18 52.9 2732 112.28 0.57 1.01 0.61 0.65

AS19 65.2 3204 125.78 0.64 0.88 0.70 0.78

AS20 70.1 3351 139.70 0.71 0.78 0.79 0.83

AS21 70.1 3831 154.08 0.78 0.76 0.81 0.88

AS22 70.1 3547 168.40 0.85 0.67 0.92 0.85

AS23 76.0 4285 183.06 0.93 0.65 0.95 0.97

AS24a 76.0 4530 197.85 1.00 0.62 1.00 1.00

Cross-tie Restrainer 1 Restrainer 2 Restrainer 3
segment

K
Eff
jp K

Eff
jp K

Eff
jp

L (m) Area (kN/m) L (m) Area (kN/m) L (m) Area (kN/m)

ðmm2Þ 
103 ðmm2Þ 
103 ðmm2Þ 
103

(b) Restrainers

AS13-14 8.32 570 10.69

AS14-15 8.05 570 10.65

AS15-16 6.78 570 14.33

AS16-17 5.69 570 18.36

AS17-18 5.74 570 16.25 10.03 570 10.76

AS18-19 3.84 570 27.95 6.50 570 16.76

AS19-20 3.86 570 26.88 6.29 570 17.37

AS20-21 3.34 570 32.12 5.57 570 18.59

AS21-22 3.05 570 34.80 4.72 570 23.22 6.43 570 17.13

AS22-23 2.78 570 39.61 4.28 570 24.79 5.84 570 17.40

AS23-24 2.64 570 40.11 3.83 570 28.50 5.05 570 21.79

aReference element.
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Moreover, the overall characteristics of these modal forms can be different from the solution for
individual cables, and are influenced by the presence and the location of the transverse connectors.
Solutions are antisymmetric or pseudo-symmetric, clearly recalling the behavior highlighted in
Section 4 of Ref. [1]. The wavelength of these modes is essentially governed by the distance
between two consecutive connectors (being almost coincident with the nodes of the modal shape).
The high density of solutions is related to the fact that these modes can be interpreted as the
components of high-order modes of the individual cables with different magnitude, for which the
location of the connector on each cable represents a potential node associated with the individual-
stay mode shape.

Fig. 6 depicts the YrðxrÞ eigenfunctions of the first eight modes (NM1–NM8) of the two-
dimensional model, normalized according to Eq. (21). Indirectly, the chosen representation
emphasizes the modal amplitudes of the localized modes (NM4-8) by a high value in the
eigenvector component of ‘‘internal’’ elements. The reduced frequency a is also included in Fig. 6,
for each solution. Indication of the flexible connectors is provided. Global network modes (1–3),
characterized by a reasonable distribution of the modal amplitudes in all the elements, are
symmetric and antisymmetric. The subsequent local modes, relatively close in frequency, are
associated with a permutation of a similar pattern (e.g., modes 5 and 6) dominated by two or three
cables at most, mainly located in the upper part of the network and belonging to the longest
cables.

Fig. 7 shows a set of higher modes (27–32) in which the migration from the sequence of highly
localized solutions to a second set of global network modes (NM29–32). As the mode number
increases, the potential interaction with higher modes of individual cables intensifies, and the
distinction between localized and global behavior becomes less evident (e.g., NM32). This
characteristic is also suggested by the study of the determinant (Fig. 5), in which a progressive
relative-amplitude decrement of the function can be noticed in the frequency interval
corresponding to non-localized solutions ð5oao6Þ:

The importance of the cable bending stiffness on the overall response, not included in the
current formulation, may be possibly considered, especially in the case of localized modes for
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(NM1–NM8). (a) NM1, a ¼ 1:60; (b) NM2, a ¼ 2:46; (c) NM3, a ¼ 3:26; (d) NM4, a ¼ 3:32; (e) NM5, a ¼ 3:45;
(f) NM6, a ¼ 3:54; (g) NM7, a ¼ 3:61; (h) NM8, a ¼ 3:63:
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which the kinking effect, associated with the stay/tie intersection (e.g., Fig. 6 for NM5 and higher,
and Fig. 7) would not be physically realizable.

The significance of the connector structural characteristics was evaluated by studying the effect
of an increase in their stiffness with respect to the same geometrical configuration. In the first case
the simulation of the network with infinitely rigid restrainers was sought; in the second one a
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system equivalent to Fig. 4(b) with extensions to ground at restrainers 2 and 3 was investigated.
Numerical challenges in the resolution of the former case (limiting condition) were carefully
addressed.

A comparative study among the three cases (NET 3C, original configuration; NET 3RC
simulation of perfectly rigid transverse links; NET 3CG modified non-rigid configuration with
ground restrainers) is presented in Fig. 8, in which the natural frequencies (Hz) are plotted as a
function of the mode number and compared to the individual cable behavior, also labeled as
‘‘mode-frequency evolution chart’’. A similar representation was introduced by Abdel-Ghaffar
and Khalifa [4] for the numerical study of vibration problems of cable-stayed bridges, in which
global (deck, towers) and local modes were identified.

From this figure, the structural behavior can be efficiently and graphically characterized: the
sequence of fundamental global modes associated with large modal masses (between 0.9 and
2 Hz) is followed by a typical plateau with high density of solutions, corresponding to the
localized modes with considerably lower modal mass, governed by the geometry of internal
elements of the system, the distance between consecutive nodes of the grid ðPj;pÞ but largely
uninfluenced by the structural properties of the connectors. The upper and lower frequency limits
of this region (UL and LL) are indicated in Fig. 8, respectively, corresponding to 1.9 and 2:7 Hz:
Beyond UL the situation reverts to a set of higher network modes and thereafter, a second plateau
appears in the frequency range coincident with high-order antisymmetric individual segment
modes; this pattern of consecutive ‘‘steps’’ defines a typical pattern for the behavior.

UL and LL limits can be also related to the frequency of antisymmetric second modes in the
individual stays; the upper a is directly related to the frequency (wavelength) of shorter cables
while the lower value is influenced by a combination of the stays in the central part of the structure
(presence of pseudo-symmetric components [1]). The similarity of localized modes to
antisymmetric individual cable eigenvectors is shown in Fig. 8, as an example, for mode 22,
compared to its ‘‘modal origins’’ (second modes of AS15S, AS16 and AS18).
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The use of rigid connectors (NET 3RC) does not introduce substantial qualitative
modifications with respect to the original mode-frequency evolution in Fig. 8 (NET 3RC with
rigid restrainers and the original NET 3C substantially overlap), suggesting that the real network
can be modelled effectively with rigid connectors as concerns the transverse interaction among
stays. As an example, the increment in the frequency of the fundamental mode is only about 3%.
The overall action of progressively increasing the stiffness of the restrainers produces increments
(although modest) in the frequency of the first global modes (and, to a lesser extent, of the higher
global solutions) but no modifications in the modal behavior.

On the contrary, the presence of the ground connectors (restrainers 2,3) is able to modify only
global modes (1 to 3, beyond 27), influencing the response at low frequencies (first modes) and,
subsequently, only for solutions in a frequency range greater than 3 Hz: No variations in the
intermediate modes (localized modes) on the plateau can be seen.

Fig. 9 depicts the modal eigenfunctions related to the first two fundamental modes of
NET 3CG (ground connectors). The comparison with the equivalent solutions of the original
configuration suggests that amplitudes are remarkably reduced in the portion of the stays
connected to the deck (e.g., mode 1, Fig. 9) for purely symmetric modes. The same behavior is
also observed for mode 2 (antisymmetric), in which the oscillations are mostly confined
to a restricted region of the network (two or three columns of elements on the left side of the
network).

3.2. Introduction of modifications to the configuration and number of the restrainers

The investigation in Section 3.1 was extended to the sensitivity of the system to geometrical
variations in the configuration of the cross-ties. By preserving the structural properties of primary
and secondary cables, the following examples were considered:

* NET 2C: two side connectors only; elimination of the central cross-tie (restrainer 2) from the
original configuration (Fig. 4);

* NET 1C: one central connector only (Fig. 10(a));
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* NET 2SC: two almost symmetric connectors (restrainers 2SC 1 and 2SC 2, Fig. 10(b)), with
optimized configuration to enhance regularity in the behavior;

* NET 2SCG: same as the previous case with additional extension to ground of cross-tie 2SC 2.

Fig. 11 presents the frequency-evolution chart summarizing the vibration characteristic of these
examples and compared with the original configuration (NET 3C). For cases NET 2C and
NET 1C, it can be seen that the new geometry of the network is responsible for a clear
modification of the overall response. The reduction in the fundamental frequency can be
quantified as 10–15% (0.8–0:85 HzÞ with respect to the original configuration ð0:98 HzÞ: The
single plateau is split in two branches in case NET 2C. The first one is associated with a
considerably lower frequency interval, which can be related to the behavior of antisymmetric
modes (mode number 2) involving the longer cables (AS24, AS23); the second one is almost
coincident with localized modes of the original configuration (modes 10–20), in terms of
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frequency. This situation is potentially undesirable since it produces a fragmentation in the modal
performance, with lower frequencies in the range of modes 1–10 with respect to the original design
specifications. Moreover, this feature is repeated for higher modes (beyond 30) and subsequent
groups of local modes. Also, network modes are affected: the frequency of the second global mode
is lower than that of the corresponding component (antisymmetric, mode number 2) of the
individual cables (also stay AS24). Moreover, selection of the distance between connectors has
contributed to the development of a pseudo-symmetric behavior (the wavelength of these modal
forms is principally affected by the relative position of the cross-ties on the central stays),
concentrated in the intermediate elements of the longest cables.

When the example with one cross-tie is only analyzed (NET 1C, Fig. 10(a)), three different
branches can be detected from Fig. 11. The location of the restrainer is fixed in this example by the
geometry of the system in accordance with the requirement of simultaneous connection of all the
stays. This configuration enhances the pseudo-symmetric response of the network, localized or
global, which would be magnified by the introduction of an extension to ground. Another
consequence is related to an earlier development of a second source of localized behavior, i.e., an
extended plateau in the proximity of mode 20 (about 3 Hz), in comparison to the 4 Hz second
plateau of the original configuration (NET 3C).

Good performance is achieved with the configuration NET 2SC (Fig. 10(b)), in which the
location of the cross-ties is selected as symmetric with respect to cable AS22. The results of Fig. 11
for the simple case without additional element to ground (NET 2SC) show that frequencies and
general patterns of the evolution function have positively increased for the fundamental modes.
The subdivision into consecutive localized-mode regions has disappeared. The position of the
plateau on the frequency axis is at about 1:9 Hz; almost the same as the original configuration
(2.0–2:1 HzÞ; its extension on the mode number axis is shorter than that of NET 3C, suggesting a
lower susceptibility to localized solutions with respect to the original configuration (approxi-
mately in the range of modes 5–20). Moreover, differences with the three-tie system frequencies
tend to disappear for higher modes, beyond 3:5 Hz:

The insertion of a ground connector in correspondence with restrainer 2SC 2 produces, as
expected, a frequency increment only for the first modes or network higher components, also
evident from the study of Fig. 11. Moreover, in this case the computed fundamental frequency,
about 1 Hz; is slightly higher than that of NET 3C, while it is lower for the second modal
component. A more careful analysis of the fundamental modes revealed that the net distinction
between localized and global eigenfunctions becomes less evident and not simply perceived from
Fig. 11, since the pseudo-symmetric behavior [1] is emphasized by the presence of the secondary
cable with extension to ground. Nevertheless, the benefits of a ground connector must be carefully
evaluated with respect to the dynamic increment/decrement of the axial force in the cross-tie
segments (either connecting two consecutive stays or the system to the deck) due to external
excitation, along with the possibility of snapping/slackening of the wire ropes.

4. Experimental validation: study of the side-span cable arrangement of the Fred Hartman Bridge

Validation of the proposed approach was performed by the comparison of a specific study
example with a set of experimental data. A long-term ambient vibration survey is currently in

ARTICLE IN PRESS

L. Caracoglia, N.P. Jones / Journal of Sound and Vibration 279 (2005) 993–1014 1007



progress on the Hartman Bridge [2,3] to monitor stay-cable vibration and to better understand the
overall performance of the structure.

The methodology was applied to the study of the side-span unit of the south tower of the
bridge. Fig. 12 shows the current configuration of the ‘‘A-line’’ 12-stay system (AS1–AS12) that
was used in the present analysis; the cable network is configured by means of three transverse
restrainers, similar to those presented in Section 3. The data set was extracted from the records of
four in-plane and out-of-plane accelerometers, placed along stays AS1, AS3, AS5 and AS9 (Fig.
12(a)) at a height of approximately 7 m from the deck level. This analysis has also considered the
results of a FEM simulation of the same network, developed in Ref. [7] by means of ANSYS53
code with 99 elements for each stay and used as the design basis of the currently installed system.

A parametric investigation of the network free-vibration problem solution patterns was
performed in order to identify the geometric and physical parameters, primarily influencing the
qualitative but also quantitative behavior of the system. Three classes of variables were
recognized: frequencies of the individual stays, mechanical properties of the secondary cables, and
mass of the restrainers and collars (neglected in the original formulation of Section 2.1).

The fundamental frequencies of stays AS1, AS3, AS5 and AS9 were identified from the
available acceleration records before the installation of the network in 1998 and integrated
through the results of a previous experimental campaign. These values were derived after careful
statistical classification of the results, derived from the in-plane spectral analyses of a selected
population of events. For the remaining cables, the quantities detected during an earlier
measurement program were selected.

Table 2 presents the first mode frequencies of the 12 stays; measured values (subdivided
between currently monitored cables and previous results) are also compared to the design
quantities [7]. Significant differences can be seen between the two sets: lower measured frequencies
for the longer cables (AS1–AS3), whereas higher values for AS7 and AS9–AS11 in the ‘‘high-
frequency side’’ of the network. Preliminary parametric simulations suggested that the variability
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of the predicted network frequencies can be significant. In some cases, such differences can be
assumed as 6–7% of the reference values if the stay frequencies are allowed to vary between 10%
and 15% with respect to design specifications (as sometimes detected in Table 2).

The modulus of elasticity of the secondary system was selected as E ¼ 1:65
 1011 N=m2 on the
network modes, and accounting for the potential variability of the effective E for non-primary
wire ropes (as suggested in Ref. [8]).

The mass of the cross-ties and corresponding collars on the twelve stays, not modelled
in Ref. [1], was also incorporated for comparison purposes with not only the experimental
results but also the available FEM simulations. A lumped system was used; details can be
found in Appendix A. Parametric values were determined from the design specifications [7].
It is worth emphasizing that a decrement of modal frequencies was noticed due to mass
effects alone: neglecting of this contribution can lead to network frequency overestimates
(about 1%).

The frequencies of the predicted network modes, derived from measured stay frequencies
ðPNM MÞ and design values ðPNM DÞ; are summarized in Table 3 (most significant modes
between 0 and 3:5 Hz), along with the first three network modes, available from the FEM
simulation [7]. A classification in terms of subdivision into global and localized network modes,
symmetric and antisymmetric, is also indicated.

A general frequency decrement in the fundamental network modes (e.g., NM1–NM3) can be
detected between PNM M and PNM D; due to the different set of frequencies (Table 2); this
tendency seems to be opposite in the case of those localized modes (e.g., NM29 and NM30)
concentrated in the lower portion of the system (Fig. 12) where higher frequencies were measured.
The fundamental frequency (NM1), computed through the experimental set of values ðPNM M in
Table 3) is 0:905 Hz; potentially susceptible to deck-stay interaction with the 10th bending mode
of the bridge (0:924 Hz; [6]). The plateau behavior (localized modes) was detected between NM4
ð2:3 HzÞ and NM30 ð3 HzÞ:
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Table 2

AS1–AS12 side-span individual stays of the Hartman Bridge; first-mode fundamental frequency (Hz)

Stay Measured values Design values [7] Difference (%)

AS1 0.626a 0.671 �6:7%
AS2 0.654b 0.686 �4:7%
AS3 0.615a 0.701 �12:3%
AS4 0.720b 0.715 +0.7%

AS5 0.790a 0.837 �5:6%
AS6 0.864b 0.882 �2:0%
AS7 1.000b 0.867 +15.3%

AS8 1.100b 1.124 �2:1%
AS9 1.246a 1.178 +5.8%

AS10 1.355b 1.259 +7.6%

AS11 1.613b 1.601 +0.7%

AS12 1.700b 1.799 �5:5%

aMonitored stays in this study.
bDerived from previous measurement.
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The comparison with the FEM was performed with respect to the set of design frequencies
ðPNM DÞ; perhaps more consistent with the input variables used in Ref. [7]. The results are
practically coincident for NM2 and NM3; a difference of +3% can be noticed in the first mode
predicted frequency (0.916) with respect to the finite-element analysis (0.886). Differences are
most probably connected to the incomplete information on the physical quantities adopted by the
FEM (this information is unavailable to the authors).

The correspondence between the predicted modal characteristics based upon the measured
frequencies (PNM M in Table 3) and the real behavior was carried out by simultaneous spectral
analysis of the in-plane acceleration record database of the four locations, after the installation of
the restrainers. The analysis was founded on the simultaneous identification of the same dominant
in-plane frequency on all the four investigated cables (comparison of the in-plane acceleration
power spectral density, PSDa�y). More than 2000 trigger files from year 2000–2001 were analyzed
(after the installation of the restrainers). The investigation considered the presence of cable
network behavior along with individual cable and, eventually, global (deck) structure modes.

The experimental identification of network modes (Table 3, PNM M) was restricted to a subset
of ‘‘visible’’ components in accordance with the location of the accelerometers, since predicted
localized modes, concentrated in the central and upper portion of the system, could not be
physically detected.

Simultaneous peak amplitudes in the acceleration spectra from the stays were found in a
significant number of realizations in the frequency range between 1.37 and 1:38 Hz; corresponding
to the simulated frequencies of the second global antisymmetric mode (1:41 Hz in Table 3,
PNM M), and in the range of 3.25–3:27 Hz; associated with higher global symmetric modes (i.e.,
NM32, predicted at 3:29 Hz in Table 3). Differences between experiments and predictions are
within the numerical approximation error (1%). NM3 is also perceived to be present in few
occasions at 2:07 Hz (1.97 in Table 3, PNM M).

A relevant example is concerned with record H02236, corresponding to a 5-min portion of an
extreme event. Fig. 13 shows the corresponding PSDa�y; extracted from the five-minute time
history, subdivided in the intervals 0.5–1:0 Hz (a), 1.0–1:5 Hz (b), 2.0–2:75 Hz (c) and 2.75–3:5 Hz
(d). The global structure (below 3 Hz; Ref. [7]) and individual stay modal frequencies are also
indicated. A different vertical axis scale was employed in the figures to enhance the readability of
the plots.
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Table 3

‘‘A-line’’ side-span system. Frequencies (Hz) of the predicted network modes, derived from measured stay frequencies

ðPNM MÞ and design values ðPNM DÞ; comparison with the results of a finite-element simulation (FEM) [7]

Mode NM1 NM2 NM3 NM4 NM5 y NM29 NM30 NM31 NM32 NM33

PNM M 0.905 1.408 1.972 2.274 2.340 y 2.981 3.063 3.197 3.284 3.345

PNM D 0.916 1.468 2.033 2.127 2.284 y 2.959 3.032 3.231 3.311 3.444

FEM 0.886 1.443 2.030 — — y — — — — —

Mode

type GS GAS G-S L L y L L GS GS L

(G) Global network mode; (L) local network mode; (S) symmetric; (AS) anti-symmetric.
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A first alignment of the four peaks occurs at 0.84–0:85 Hz (Fig. 13(a)) and is considered the first
global mode of the network; this compares with the predicted value of 0:905 Hz ðPNM MÞ: This is
the only event (along with 2–3 subsequent records, corresponding to a duration of approximately
20 min), in which NM1, as network mode, was clearly identified. This extremely rare event was
mainly driven by the high-amplitude motion of the deck due to vortex shedding and related to a
strong wind with direction almost perpendicular to the bridge axis. A noticeable peak at 0:71 Hz
(8th vertical mode of the deck structure) is in fact present as shown in Fig. 13(a). Differences
between the experimental and predicted frequency seem quite large in this case (6–7%).
Nevertheless, a similar observation also applies if the design values of the cable frequencies or the
FEM simulations are considered, suggesting that this difference is due to factors also not captured
with alternative techniques or input data.

Uncertainties in the identification of the model parameters, background noise, influence of
geometry and cable sag (recently explored in Ref. [9] in the case of two parallel cables with one
restrainer), amplitude-dependence effects neglected in the current method, along with non-
stationary patterns in the selected records (complicating the interpretation of an ‘‘averaged’’
spectral result), may be in part responsible for such differences. Moreover, time dependence of the
cable tension is evident from the records (long-term frequency diminution, in particular for the
longest and most excited stays); predictions are founded on measured frequency values, only
possible before the installation of the restrainers (1997), while the spectral modal identification is
derived from the analysis of years 2000 and 2001.

In addition, external boundary conditions (fixed supports) of the partial differential equation
system [1] are believed to be potentially violated in this mode, in which towers are speculated to be
experiencing low-frequency oscillations. Large-amplitude motion of these sub-elements of the
structure is likely to induce a decrement of relative distance between corresponding cable ends
with consequent reduction of the fundamental frequency. Extensional symmetric modes (such as
NM1), where the contribution of the cable tension predominates in the definition of the modal
characteristics, can be significantly affected by such ‘‘imperfect’’ boundary conditions. This
observation seems to be consistent with the very good agreement between full-scale data and
predictions that is recorded for NM2 (antisymmetric), in which the geometry alone is primarily
responsible for the modal configuration (i.e., a non-extensional mode).

In Fig. 13(b), another simultaneous alignment of the spectra on three cables can be seen at
1:38 Hz; coincident with the second mode of the network, NM2. This mode is antisymmetric and,
accordingly, the response of AS9, located in correspondence with the central axis of the network,
is excluded. In both cases (Fig. 13(a) and (b)), the frequencies are clearly associated with new
modal forms (individual cable frequencies of AS1, AS3, AS5 and AS9 are in fact absent).

In Fig. 13(d), NM31, the fourth global mode of the system, can be observed ð3:22 HzÞ and
compared to the predictions. Indication of the potential development of local network modes
rather than individual stay oscillation can be noticed in Fig. 13(c). Localized modes, potentially
detectable by the sensors in accordance to their location, are concentrated between 2.3 and 2:6 Hz;
while they tend to disappear in other ranges. Despite the presence of predicted frequencies
associated with individual cable behavior in this region, patterns of observed frequencies were not
consistent with unrestrained stay oscillation.

This investigation, while illuminating, cannot be considered comprehensive since the
experimental system was not designed for this purpose and an extension of the instrumentation
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to other stays or locations was not possible. It is also worth mentioning that the challenges of
long-term monitoring of such a complex system are significant [2,3,6]. Moreover, most ambient-
induced vibration phenomena are concentrated in selected portions of the bridge (e.g., groups of
stays), where localized modes are more likely to be detected with respect to global modes and
relatively high-oscillation amplitudes are usually required for the appropriate identification.

5. Conclusions

Limited investigations of in-plane vibrations of large cable networks are available in the
literature. An alternative methodology for the analytical derivation of the equation of motion
(free-vibration problem) of a network, based on the taut-cable theory, developed in a companion
paper for simplified cases [1], has been extended and applied to the study of a real case.
Advantages and limitations with respect to finite-element simulations are addressed in Section 7 of
Ref. [1].

The central and side span configurations of the Fred Hartman Bridge (Texas, USA) were
considered in this study. The analyses highlighted the distinction between ‘‘global’’ and
‘‘localized’’ mode shapes of the network. Subsequently, a sensitivity analysis of the central-span
network arrangement was carried out to examine the influence of geometry and configuration
modifications on these systems.

The methodology was also compared to experimental results derived from an intensive ambient
vibration survey on the same bridge. Correspondence between predicted values and measured
quantities was found. Data records confirmed the existence of global or localized system modes
and contributed to the validation of the procedure.

The results suggest that the control of this category of structures can become very challenging at
higher frequencies, potentially reducing the overall performance, due to the different nature of the
modes: the frequency and modal mass increment in the fundamental modes must be balanced with
the potential undesirable behavior of the localized modes.
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Appendix A. Equilibrium boundary conditions

The mass of the secondary system in Section 4 (transverse cables and anchorages to the primary
stays) was simulated by means of a lumped-element configuration, Mj;p; concentrated in
correspondence with the Pj;p nodes of the network (Fig. 1). The equilibrium boundary conditions
(8) and (9), incorporating the inertial force contribution associated with each Mj;p (or,
equivalently, through the dimensionless quantities wj;p ¼ Mj;p=ðm1L1Þ), can be rewritten as

Kj;pðBjþ1;pþ1 � Bj;pþ1Þ ¼
Xj

k¼1

apH1

L1
s p

k;j



nk½Ak;p cosðapfkxk;pÞ � Bk;p sinðapfkxk;pÞ � Ak;pþ1	

�apwk;pBk;pþ1

( )

with p ¼ 1;y; *m � 1; j ¼ 1;y; ðgp � 1Þ; *m ¼ max½gp	; ðA:1Þ

KGp
Bgp;pþ1 ¼

Xgp

j¼1

apH1

L1
sp

j;gp
nj



nj½Aj;p cosðapfjxj;pÞ � Bj;p sinðapfjxj;pÞ � Aj;pþ1	

�apwj;pBj;pþ1

( )

with p ¼ 1;y; *m � 1: ðA:2Þ
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